\(\int \frac {\sqrt {\cos (c+d x)}}{(a+a \cos (c+d x))^3} \, dx\) [194]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 155 \[ \int \frac {\sqrt {\cos (c+d x)}}{(a+a \cos (c+d x))^3} \, dx=\frac {E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{10 a^3 d}+\frac {\operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{6 a^3 d}+\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}+\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{15 a d (a+a \cos (c+d x))^2}-\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{10 d \left (a^3+a^3 \cos (c+d x)\right )} \]

[Out]

1/10*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^3/d+1/6*(cos(1/2*
d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a^3/d+1/5*sin(d*x+c)*cos(d*x+c)^(
1/2)/d/(a+a*cos(d*x+c))^3+1/15*sin(d*x+c)*cos(d*x+c)^(1/2)/a/d/(a+a*cos(d*x+c))^2-1/10*sin(d*x+c)*cos(d*x+c)^(
1/2)/d/(a^3+a^3*cos(d*x+c))

Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 155, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {2843, 3057, 2827, 2720, 2719} \[ \int \frac {\sqrt {\cos (c+d x)}}{(a+a \cos (c+d x))^3} \, dx=\frac {\operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{6 a^3 d}+\frac {E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{10 a^3 d}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{10 d \left (a^3 \cos (c+d x)+a^3\right )}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{15 a d (a \cos (c+d x)+a)^2}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3} \]

[In]

Int[Sqrt[Cos[c + d*x]]/(a + a*Cos[c + d*x])^3,x]

[Out]

EllipticE[(c + d*x)/2, 2]/(10*a^3*d) + EllipticF[(c + d*x)/2, 2]/(6*a^3*d) + (Sqrt[Cos[c + d*x]]*Sin[c + d*x])
/(5*d*(a + a*Cos[c + d*x])^3) + (Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(15*a*d*(a + a*Cos[c + d*x])^2) - (Sqrt[Cos[
c + d*x]]*Sin[c + d*x])/(10*d*(a^3 + a^3*Cos[c + d*x]))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2843

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[b*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/(a*f*(2*m + 1))), x] - Dist[1/(a*b*(2*m + 1)),
 Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 1)*Simp[a*d*n - b*c*(m + 1) - b*d*(m + n + 1)*Sin[
e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^
2, 0] && LtQ[m, -1] && LtQ[0, n, 1] && (IntegersQ[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))

Rule 3057

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*
x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rubi steps \begin{align*} \text {integral}& = \frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}+\frac {\int \frac {\frac {a}{2}+\frac {3}{2} a \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2} \, dx}{5 a^2} \\ & = \frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}+\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{15 a d (a+a \cos (c+d x))^2}+\frac {\int \frac {2 a^2+\frac {1}{2} a^2 \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx}{15 a^4} \\ & = \frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}+\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{15 a d (a+a \cos (c+d x))^2}-\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{10 d \left (a^3+a^3 \cos (c+d x)\right )}+\frac {\int \frac {\frac {5 a^3}{4}+\frac {3}{4} a^3 \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx}{15 a^6} \\ & = \frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}+\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{15 a d (a+a \cos (c+d x))^2}-\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{10 d \left (a^3+a^3 \cos (c+d x)\right )}+\frac {\int \sqrt {\cos (c+d x)} \, dx}{20 a^3}+\frac {\int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{12 a^3} \\ & = \frac {E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{10 a^3 d}+\frac {\operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{6 a^3 d}+\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}+\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{15 a d (a+a \cos (c+d x))^2}-\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{10 d \left (a^3+a^3 \cos (c+d x)\right )} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 2.24 (sec) , antiderivative size = 139, normalized size of antiderivative = 0.90 \[ \int \frac {\sqrt {\cos (c+d x)}}{(a+a \cos (c+d x))^3} \, dx=-\frac {\sqrt {\cos (c+d x)} \csc (c+d x) \left (\frac {1}{8} (-847+1440 \cos (c+d x)-532 \cos (2 (c+d x))+35 \cos (4 (c+d x))) \csc ^4(c+d x)+35 \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},\cos ^2(c+d x)\right ) \sqrt {\sin ^2(c+d x)}-40 \cos (c+d x) \operatorname {Hypergeometric2F1}\left (\frac {3}{4},\frac {7}{2},\frac {7}{4},\cos ^2(c+d x)\right ) \sqrt {\sin ^2(c+d x)}\right )}{210 a^3 d} \]

[In]

Integrate[Sqrt[Cos[c + d*x]]/(a + a*Cos[c + d*x])^3,x]

[Out]

-1/210*(Sqrt[Cos[c + d*x]]*Csc[c + d*x]*(((-847 + 1440*Cos[c + d*x] - 532*Cos[2*(c + d*x)] + 35*Cos[4*(c + d*x
)])*Csc[c + d*x]^4)/8 + 35*Hypergeometric2F1[1/4, 1/2, 5/4, Cos[c + d*x]^2]*Sqrt[Sin[c + d*x]^2] - 40*Cos[c +
d*x]*Hypergeometric2F1[3/4, 7/2, 7/4, Cos[c + d*x]^2]*Sqrt[Sin[c + d*x]^2]))/(a^3*d)

Maple [A] (verified)

Time = 4.19 (sec) , antiderivative size = 270, normalized size of antiderivative = 1.74

method result size
default \(\frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (12 \left (\cos ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-10 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-22 \left (\cos ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+7 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-3\right )}{60 a^{3} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(270\)

[In]

int(cos(d*x+c)^(1/2)/(a+cos(d*x+c)*a)^3,x,method=_RETURNVERBOSE)

[Out]

1/60*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(12*cos(1/2*d*x+1/2*c)^8-10*(sin(1/2*d*x+1/2*c)^2
)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^5+6*(sin(1/
2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*cos(1/2*d*x+1/2*c)^5*EllipticE(cos(1/2*d*x+1/2*c),2^(1
/2))-22*cos(1/2*d*x+1/2*c)^6+6*cos(1/2*d*x+1/2*c)^4+7*cos(1/2*d*x+1/2*c)^2-3)/a^3/cos(1/2*d*x+1/2*c)^5/(-2*sin
(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 344, normalized size of antiderivative = 2.22 \[ \int \frac {\sqrt {\cos (c+d x)}}{(a+a \cos (c+d x))^3} \, dx=-\frac {2 \, {\left (3 \, \cos \left (d x + c\right )^{2} + 4 \, \cos \left (d x + c\right ) - 5\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 5 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{3} + 3 i \, \sqrt {2} \cos \left (d x + c\right )^{2} + 3 i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{3} - 3 i \, \sqrt {2} \cos \left (d x + c\right )^{2} - 3 i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{3} - 3 i \, \sqrt {2} \cos \left (d x + c\right )^{2} - 3 i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{3} + 3 i \, \sqrt {2} \cos \left (d x + c\right )^{2} + 3 i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{60 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \]

[In]

integrate(cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^3,x, algorithm="fricas")

[Out]

-1/60*(2*(3*cos(d*x + c)^2 + 4*cos(d*x + c) - 5)*sqrt(cos(d*x + c))*sin(d*x + c) + 5*(I*sqrt(2)*cos(d*x + c)^3
 + 3*I*sqrt(2)*cos(d*x + c)^2 + 3*I*sqrt(2)*cos(d*x + c) + I*sqrt(2))*weierstrassPInverse(-4, 0, cos(d*x + c)
+ I*sin(d*x + c)) + 5*(-I*sqrt(2)*cos(d*x + c)^3 - 3*I*sqrt(2)*cos(d*x + c)^2 - 3*I*sqrt(2)*cos(d*x + c) - I*s
qrt(2))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 3*(-I*sqrt(2)*cos(d*x + c)^3 - 3*I*sqrt(2)
*cos(d*x + c)^2 - 3*I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(
d*x + c) + I*sin(d*x + c))) + 3*(I*sqrt(2)*cos(d*x + c)^3 + 3*I*sqrt(2)*cos(d*x + c)^2 + 3*I*sqrt(2)*cos(d*x +
 c) + I*sqrt(2))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(a^3*d*cos
(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)

Sympy [F]

\[ \int \frac {\sqrt {\cos (c+d x)}}{(a+a \cos (c+d x))^3} \, dx=\frac {\int \frac {\sqrt {\cos {\left (c + d x \right )}}}{\cos ^{3}{\left (c + d x \right )} + 3 \cos ^{2}{\left (c + d x \right )} + 3 \cos {\left (c + d x \right )} + 1}\, dx}{a^{3}} \]

[In]

integrate(cos(d*x+c)**(1/2)/(a+a*cos(d*x+c))**3,x)

[Out]

Integral(sqrt(cos(c + d*x))/(cos(c + d*x)**3 + 3*cos(c + d*x)**2 + 3*cos(c + d*x) + 1), x)/a**3

Maxima [F]

\[ \int \frac {\sqrt {\cos (c+d x)}}{(a+a \cos (c+d x))^3} \, dx=\int { \frac {\sqrt {\cos \left (d x + c\right )}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{3}} \,d x } \]

[In]

integrate(cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^3,x, algorithm="maxima")

[Out]

integrate(sqrt(cos(d*x + c))/(a*cos(d*x + c) + a)^3, x)

Giac [F]

\[ \int \frac {\sqrt {\cos (c+d x)}}{(a+a \cos (c+d x))^3} \, dx=\int { \frac {\sqrt {\cos \left (d x + c\right )}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{3}} \,d x } \]

[In]

integrate(cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^3,x, algorithm="giac")

[Out]

integrate(sqrt(cos(d*x + c))/(a*cos(d*x + c) + a)^3, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)}}{(a+a \cos (c+d x))^3} \, dx=\int \frac {\sqrt {\cos \left (c+d\,x\right )}}{{\left (a+a\,\cos \left (c+d\,x\right )\right )}^3} \,d x \]

[In]

int(cos(c + d*x)^(1/2)/(a + a*cos(c + d*x))^3,x)

[Out]

int(cos(c + d*x)^(1/2)/(a + a*cos(c + d*x))^3, x)